Minggu, 02 Februari 2014

Pipeline Decommisioning



Pipa bawah laut yang sudah mencapai akhir masa layan terkadang tidak dibutuhkan lagi karena cadangan di lapangan tersebut sudah habis atau transportation patterns di wilayah itu sudah berubah. 
Pipa bawah laut dengan kondisi tersebut tidak dapat ditinggal begitu saja oleh operator karena dapat membusuk dan mengeluarkan hidrokarbon yang akan merusak lingkungan. Karena itu diperlukan pekerjaan decommissioning untuk memutuskan apa yang akan dilakukan terhadap pipa bawah laut yang sudah tidak terpakai.

Pengambilan keputusan decommissioning menyangkut kepentingan politik, legal, lingkungan, finansial, pajak, dan faktor teknik. Pada beberapa negara, hokum mengenai abandonment dari pipeline sudah didefinisikan. Contohnya di Inggris dengan Submarine Pipelines Act-nya.


Andrew C. Palmer dan Roger A. King (2008) menyatakan alternatif dari pipeline decommissioning adalah sebagai berikut:
  • Doing nothing. Keputusan ini tidak disarankan karena adanya mekanisme pembusukan pipa bawah laut. Beberapa operator North Sea memilih keputusan ini untuk stabilisasi sementara untuk operasi yang di-suspend namun tidak akan ditinggal secara permanen.
  • Re-use. Untuk mempertahankan pembangunan berkelanjutan, re-use adalah opsi ideal. Kekurangannya adalah tidak semua line eksisting dapat digunakan kembali, karena material atau diameter yang tidak sesuai, memiliki tekanan operasi rendah, atau sudah rusak akibat korosi.
  • Recovery for scrap. Adalah dengan mendaur ulang pipeline dengan tidak meninggalkan puing di dasar laut. Opsi ini ramah lingkungan dan sesuai dengan konsep pembangunan berkelanjutan. Namun mebutuhkan energi yang lebih dan memiliki pengaruh secara langsung yang lebih besar terhadap lingkungan. Recovery dapat dilakukan dengan metode tow, reversed reeling ke reel ship, atau menggunakan tensioner di lay barge untuk menarik pipa kembali ke stinger, lalu pipa dibagi ke dalam berbagai section dan dibawa kembali ke offshore.


Gambar 1. Pipeline Decommissioning
(Sumber: http://www.offshore-mag.com)

Sumber: Palmer, Andrew, “Subsea Pipeline Engineering 2nd Edition”, PennWell, 2008.

Pig Launcher





Seperti telah disinggung pada post sebelumnya mengenai inspeksi pada pipa bawah laut dengan metode pigging, diperlukan Pig Launcher. Pig Launcher adalah alat peluncur pig yang berupa corong berbentuk Y pada bagian dalam pipa. Peluncur ditutup dan tekanan dari produk dalam pipa digunakan untuk mendorong pig sepanjang pipa sampai mencapai perangkap penerima, yaitu pig trap/pig catcher.

Pigging telah digunakan selama bertahun-tahun untuk membersihkan pipa berdiameter lebih besar dalam industri
Penggunaan sistem pigging diameter yang lebih kecil sekarang meningkat di banyak process plant untuk meningkatkan efisiensi .

Keuntungan utama dari sistem piggable adalah potensi penghematan produk yang dihasilkan. Pada akhir setiap transfer produk,
pembersihan seluruh isi dilakukan dengan pigging, baik ke depan menuju titik penerimaan , atau mundur ke tangki sumber.

Tanpa perlu garis pembilasan, pigging menawarkan keuntungan tambahan yang jauh lebih cepat dan dapat diandalkan. Pengambilan sampel produk di titik penerimaan menjadi lebih cepat
.

Sumber: jamisonproducts.com

Pipeline Pigging

Pipeline pigging adalah metode yang dilakukan untuk menjamin aliran minyak dan gas dalm pipa bawah laut berjalan lancar. Cara kerja pipeline pigging dijelaskan dalam artikel di Rigzone (http://www.rigzone.com/training/insight.asp?insight_id=310&c_id=19). Dalam bahasa aslinya, artikel disadur demikian: 
The maintenance tool, pipeline pigs are introduced into the line via a pig trap, which includes a launcher and receiver. Without interrupting flow, the pig is then forced through it by product flow, or it can be towed by another device or cable. Usually cylindrical or spherical, pigs sweep the line by scraping the sides of the pipeline and pushing debris ahead. As the travel along the pipeline, there are a number functions the pig can perform, from clearing the line to inspecting the interior.

There are two main hypotheses for why the process is called "pipeline pigging," although neither have been proved. One theory is that "pig" stands for Pipeline Intervention Gadget. The other states that a leather-bound pig was being sent through the pipeline, and while it passed, the leather squeaked against the sides of the pipe, sounding like a squealing pig.Engineers must consider a number of criteria when selecting the proper pig for a pipeline. First, it's important to define what task the pig will be performing. Also, size and operating conditions are important to regard. Finally, pipeline layout is integral to consider when choosing a pig. Because every pipeline is different, there is not a set schedule for pigging a line, although the quantity of debris collected in a pipeline and the amount of wear and tear on it can increase the frequency of pigging. Today, pipeline pigging is used during all phases of the life of a pipeline. Types of Pipeline Pigs Although first used simply to clear the line, the purpose of pipeline pigging has evolved with the development of technologies. Utility pigs are inserted into the pipeline to remove unwanted materials, such as wax, from the line. Inline inspection pigs can also be used to examine the pipeline from the inside, and specialty pigs are used to plug the line or isolate certain areas of the line. Lastly, gel pigs are a liquid chemical pigging system.
Debris after pigging
Debris after pigging
Source: www.ppsa-online.com

Similar to cleaning your plumbing line, utility pigs are used to clean the pipeline of debris or seal the line. Debris can accumulate during construction, and the pipeline is pigged before production commences. Also, debris can build up on the pipeline, and the utility pig is used to scrape it away. Additionally, sealing pigs are used to remove liquids from the pipeline, as well as serve as an interface between two different products within a pipeline. Types of utility pigs include mandrel pigs, foam pigs, solid cast pigs and spherical pigs.
Inspection pigs, also referred to as in-line inspection pigs or smart pigs, gather information about the pipeline from within. . The type of information gathered by smart pigs includes the pipeline diameter, curvature, bends, temperature and pressure, as well as corrosion or metal loss. Inspection pigs utilize two methods to gather information about the interior condition of the pipeline: magnetic flux leakage (MFL) and ultrasonics (UT). MFL inspects the pipeline by sending magnetic flux into the walls of the pipe, detecting leakage, corrosion, or flaws in the pipeline. Ultrasonic inspection directly measures the thickness of the pipe wall by using ultrasonic sounds to measure the amount of time it takes an echo to return to the sensor 
Specialty pigs, such as plugs, are used to isolate a section of the pipeline for maintenance work to be performed. The pig plug keeps the pipeline pressure in the line by stopping up the pipeline on either side of where the remedial work is being done.
A combination of gelled liquids, gel pigs can be used in conjunction with conventional pigs or by themselves. Pumped through the pipeline, there are a number of uses for gel pigs, including product separation, debris removal, hydrotesting, dewatering and condensate removal, as well as removing a stuck pig. Because there now exist multi-diameter pipelines, dual and multi-diameter pigs have been developed, as well.

Sumber: rigzone.com

Deepwater Pipeline

Deepwater pipeline adalah jaringan pipa bawah laut di laut dalam. Deepwater pipeline memiliki tantangan besar dalam hal desain dan konstruksi.

Pada Januari 2012, dnvusa.com merilis artikel mengenai konsep baru deepwater pipeline yang dapat mengurangi biaya, namun tidak aman. Artikel dalam bahasa asli dapat dibaca di bawah ini.


X-Stream can reduce both the pipeline wall thickness and time spent on welding and installation compared to deep-water gas pipelines currently in operation. The exact reduction in the wall thickness depends on the water depth, pipe diameter and actual pipeline profile. Typically, for a gas pipeline in water depths of 2,500 m, the wall thickness reduction can be 25 to 30 % compared to traditional designs.

“It’s essential for DNV that the new concept meets the strict requirements of the existing safety and integrity regime, and I’m pleased to confirm that this concept does,” says Dr. Henrik O. Madsen, DNV’s CEO, who announced the news at a press briefing in London today.

“DNV has been instrumental in developing and upgrading the safety and integrity regime and standards for offshore pipelines over the past decades. Today, more than 65 % of the world’s offshore pipelines are designed and installed to DNV’s offshore pipeline standard. As the deep-water gas transportation market will experience massive investments and considerable growth over the coming years, new safe and cost-efficient solutions are needed,” Dr. Madsen adds.

Current deep-water gas pipelines have thick walls and, due to quality and safety requirements, the number of pipe mills capable of producing the pipe is limited. When installing pipelines, the heavy weights are difficult to handle and the thick walls are challenging to weld. And finally, the number of pipe-laying vessels for deep-water pipelines is limited too.

New offshore oil and gas fields are being developed in deeper and deeper waters and export solutions for the gas are critical. New exploration activities are also heading for ultra-deepwaters. The distance to shore is increasing too. The X-Stream concept can for such fields represent an alternative to e.g. floating LNG plants combined with LNG shuttle tankers.

By controlling the pressure differential between the pipeline’s external and internal pressures at all times, the amount of steel and thickness of the pipe wall can be reduced by as much as 25-30 % - or even more compared to today’s practice and depending on the actual project and its parameters. This will of course make it easier and cheaper to manufacture and install the pipeline.

“By utilising an inverted High Pressure Protection System – i-HIPPS – and inverted Double Block and Bleed valves – i-DBB – the system immediately and effectively isolates the deep-water pipe if the pressure starts to fall. In this way, the internal pipeline pressure is maintained above a critical level for any length of time,” explains Asle VenÃ¥s, DNV’s Global Pipeline Director.

The new concept is simple and reliable. During installation, it is necessary to fully or partially flood the pipeline to control its differential pressure. During operation, the i-HIPPS and i-DBB systems ensure that the pipeline’s internal pressure can never drop below the collapse pressure – plus a safety margin. In sum – a certain minimum pressure will be maintained in the pipeline at all times.

“It will also be important to maintain the minimum pressure in the pipeline during pre-commissioning. This can be done using produced gas separated from the water in the pipe by a set of separation pigs and gel. This technology is not new to the industry. This method has already been initiated as standard practice by several oil companies,” says Mr VenÃ¥s.

A team of mainly young highly skilled engineers, headed by DNV in Rio de Janeiro, Brazil, is behind the X-Stream concept. As with the other DNV concepts launched in 2010 and 2011, the X-Stream team was asked to think outside the box.

The DNV study is a concept study, and a basic and detailed design will need to be carried out before the X-Stream concept is realised on a real project. DNV intends to work further with the industry to refine and test the concept.

“I’m pleased to announce the outcome of this innovation project. At DNV, we feel confident that, by further qualifying the X-Stream concept, huge financial savings can be made for long distance, deep-water gas pipelines without compromising pipeline safety and integrity,” concludes Dr. Madsen.

Sumber: dnvusa.com

Free Span Mitigation



Pipa bawah laut dapat mengalami free span akibat berbagai macam kondisi, permukaan dasar laut yang tidak rata dan scouring. Apabila free span terlalu panjang melebihi batas ijinnya, vortex induced vibrations (VIV) dapat menyebabkan pipa mengalami kelelahan (fatigue) dan menyebabkan kegagalan (failure).

Mitigasi free span dapat dilakukan dengan:

  • Metode Pipeline Lowering (PL)
  •  
  • Grout/Sand bag placement
  • Rock dump placement

Sumber: http://www.capegroup.net/products-services-46/total-oilfield-pipeline-solutions-50/free-span-assessment-rectification-118#sthash.3FZIsEtb.dpuf

Pipeline Corrosion Resistance Alloy Material

Sergio Cerutti dalam paper-nya yang berjudul An Overview of Corrosion Resistant Alloy Steel Selection and Requirements for Oil and Gas Industry menyatakan demikian:

Pada lingkungan lepas pantai, banyak kasus sering sejumlah besar hidrogen sulfida, karbon dioksida dan air garam yang hadir dengan produksi minyak dan gas.  
Korosivitas tinggi sehubungan dengan korosi umum dan korosi retak tegang oleh sulfida ( SSCC ), dengan klorida ( CSCC ) atau gabungan semuanya. Selain itu, faktor lain tekanan dan suhu tinggi tersebut dapat mempersulit proses pemilihan material.
Persyaratan mekanik untuk bahan yang digunakan untuk peningkatan peralatan produksi dengan kedalaman baik karena beban hangoff dan tekanan lebih besar, sedangkan suhu tinggi memiliki pengaruh yang merugikan pada properti mekanik. Dalam keadaan ini bahan CRA dapat menawarkan alternatif yang valid untuk metode konvensional pengendalian korosi. Berdasarkan penggunaan paduan tahan korosi di lapangan minyak telah meningkat secara substansial selama beberapa tahun terakhir.
Dengan CRA istilah dimaksudkan logam yang mencapai ketahanan korosi yang tinggi dengan cara paduan . Berbagai bahan CRA sekarang tersedia untuk tubing.  Tergantung pada lingkungan pilihan CRA bisa berkisar dari AISI 420 ( 13 % Chrome ) untuk layanan CO2 untuk paduan titanium untuk aplikasi yang sangat parah. 

Sumber: http://www.gruppofrattura.it/ocs/index.php/cigf/igf14/paper/viewFile/564/11238

Pipeline Integrity Management



Manajemen integritas pipeline adalah proses dalam menilai dan mengurangi risiko pipa terhadap kemungkinan dan konsekuensi dari insiden. The PipelineThe Pipeline Safety Improvement Act of 2002 adalah undang-undang federal yang membahas analisis risiko dan program manajemen integritas untuk operator pipa dan mengarahkan US Department of Transportation ( DOT ) untuk mengadopsi peraturan tentang manajemen integritas. Langkah-langkah dasar dari proses manajemen integritas adalah:
  • Indentifikasi High Consequence Area (HCA).
  • Indentifikasi ancaman dan penilaian resiko.
  • Penilaian integritas (integrity assessment). Segmen pipa dinilai sesuai dengan jadwal dan metode yang diidentifikasi dalam Baseline Assessment Plan (BAP). Ada tiga metode penilaian utama yaitu inspeksi inline dengan alat inspeksi (pigging), uji tekanan, dan Direct Assessment.
  • Remediasi. Potensi masalah integritas yang diidentifikasi selama penilaian integritas dievaluasi dan tindakan yang diambil untuk menghilangkan masala.
  • Tindakan preventif dan mitigative.
  • Evaluasi dan penilaian secara terus-menerus dan penilaian.


Gambar 1. Lingkup Kerja Manajemen Integritas
(Sumber: giepipelineintegrity.com)

Gambar 2. Proses Pipeline Integrity Management
(Sumber: pipelinesinternational.com)

Sumber: vectren.com