Minggu, 02 Februari 2014

Horizontal Directional Drilling

Horizontal Directional Drilling adalah pengeboran sumur melengkung untuk mencapai target yang tidak langsung di bawah situs bor. Cara ini berguna pada kondisi  di mana area di atas deposit yang ditargetkan tidak dapat diakses. Pengeboran Directional sangat berguna untuk lokasi lepas pantai. Dengan directional drilling, rig lepas pantai dapat memperoleh akses ke deposito yang tidak langsung di bawah rig, yang berarti bahwa 20 atau lebih sumur dapat dibor dari rig tunggal, sehingga jauh lebih efektif untuk pengeboran lepas pantai.

Horizontal drilling dibahas di naturalgas.org. Dalam bahasa aslinya artikel disadur seperti berikut.

The difference between traditional directional or slant drilling and modern day horizontal drilling, is that with directional drilling it can take up to 2,000 feet for the well to bend from drilling at a vertical to drilling horizontally. Modern horizontal drilling, however, can make a 90 degree turn in only a few feet! The concept of horizontal drilling is not new. In fact, the first patent for horizontal drilling was issued in 1891 to Robert E. Lee, for drilling a horizontal drainhole for a vertical well. The advances in technology and the increasing focus on accessing less accessible reservoirs to meet rising demand have allowed for a proliferation of horizontal drilling.
Horizontal drilling technologies have been heralded by many as the greatest advances since the conception of the rotary drilling bit. Horizontal drilling now accounts for 5 to 8 percent of active onshore wells in the U.S., and seems to be increasing every year. The ability of horizontal drilling to reach and extract petroleum from formations that are not accessible with vertical drilling has made it an invaluable technology. Horizontal drilling allows for an increase in the recoverable petroleum in a given formation, and even increases the production in fields previously thought of as marginal or mature. Horizontal drilling also allows for more economical drilling, and less impact on environmentally sensitive areas. In fact, in some areas in which drilling is not allowed for environmental reasons, it is possible to drill horizontal wells to the targeted deposit without harming the environment above. In addition, with this technology, fewer wells are needed to produce the same amount of hydrocarbons.
Slant and Horizontal Drilling
Source: USGS
A number of advances were crucial to the progression of horizontal drilling. Measurement-while-drilling technology (or ‘borehole telemetry’) has allowed engineers and geologists to gain up-to-the-minute subsurface information, even while the well is being drilled. This avoids some of the complications of normal logging practices, and greatly increases the drilling engineer’s knowledge of the well characteristics. Steerable downhole motor assemblies have also allowed for advances in horizontal drilling. While conventional drilling occasionally employs the use of downhole motors just above the drill bit to penetrate hard formations, steerable drilling motors allow the actual path of the well to be controlled while drilling.
There are three main types of horizontal wells; short-radius, medium-radius, and long-radius. Short-radius wells typically have a curvature radius of 20 to 45 feet, being the ‘sharpest turning’ of the three types. These wells, which can be easily dug outwards from a previously drilled vertical well, are ideal for increasing the recovery of natural gas or oil from an already developed well. They can also be used to drill non-conventional formations, including coalbed methane and tight sand reservoirs.
Medium-radius wells typically have a curvature radius of 300 to 700 feet, with the horizontal portion of the well measuring up to 3,500 feet. These wells are useful when the drilling target is a long distance away from the drillsite, or where reservoirs are spaced apart underground. Multiple completions may be used to gain access to numerous deposits at the same time.
Long-radius wells typically have a curvature radius of 1,000 to 4,500 feet, and can extend a great distance horizontally. These wells are typically used to reach deposits offshore, where it is economical to drill outwards from a single platform to reach reservoirs inaccessible with vertical drilling.
To give an idea of the effectiveness of horizontal drilling, the U.S. Department of Energy indicates that using horizontal drilling can lead to an increase in reserves in place by 2% of the original oil in place. The production ratio for horizontal wells versus vertical wells is 3.2 to 1, while the cost ratio of horizontal versus vertical wells is only 2 to 1. In carbonate formations, where 90 percent of horizontal drilling is done, productivity of horizontal wells is almost 400 percent higher than vertical wells, while they cost only 80 percent more!
Horizontal drilling is an important innovation that will likely find countless new applications as the technology is developed. With increasing demand for natural gas, innovations like these will be invaluable to securing and bringing to surface these much needed hydrocarbons.

Sumber: naturalgas.org

Tidak ada komentar:

Posting Komentar